Analytical model for nonlinear response of carbon nanotubes enhanced by a plasmonic metamaterial


الملخص بالإنكليزية

We present an analytical model describing complex dynamics of a hybrid nonlinear system consisting of interacting carbon nanotubes (CNT) and a plasmonic metamaterial. Our model is based on the set of coupled equations, which incorporates well-established density matrix formalism appropriate for quantum systems (CNT are described as a two level system) and harmonic-oscillator approach ideal for modelling sub-wavelength plasmonic and optical resonators. We show that the saturation nonlinearity of CNT increases multifold in the resonantly enhanced near field of a metamaterial. In the framework of our model, we discuss the effect of inhomogeneity of the CNT layer (band gap value distribution) on the nonlinearity enhancement. It is shown, that the Purcell effect is indistinguishable from the field enhancement and is described by the same phenomenological constant.

تحميل البحث