Relating the microscopic rules in coalescence-fragmentation models to the macroscopic cluster size distributions which emerge


الملخص بالإنكليزية

Coalescence-fragmentation problems are of great interest across the physical, biological, and recently social sciences. They are typically studied from the perspective of the rate equations, at the heart of such models are the rules used for coalescence and fragmentation. Here we discuss how changes in these microscopic rules affect the macroscopic cluster-size distribution which emerges from the solution to the rate equation. More generally, our work elucidates the crucial role that the fragmentation rule can play in such dynamical grouping models. We focus on two well-known models whose fragmentation rules lie at opposite extremes setting the models within the broader context of binary coalescence-fragmentation models. Further, we provide a range of generalizations and new analytic results for a well-known model of social group formation [V. M. Eguiluz and M. G. Zimmermann, Phys. Rev. Lett. 85, 5659 (2000)]. We develop analytic perturbation treatment of the original model, and extend the mathematical to the treatment of growing and declining populations.

تحميل البحث