Oersted fields and current density profiles in spin-torque driven magnetization dynamics -- Finite element modelling of realistic geometries


الملخص بالإنكليزية

The classical impact of electrical currents on magnetic nanostructures is analyzed with numerical calculations of current-density distributions and Oersted fields in typical contact geometries. For the Oersted field calculation, a hybrid finite element / boundary element method (FEM/BEM) technique is presented which can be applied to samples of arbitrary shape. Based on the FEM/BEM analysis, it is argued that reliable micromagnetic simulations on spin-tranfer-torque driven magnetization processes should include precise calculations of the Oersted field, particularly in the case of pillar contact geometries. Similarly, finite-element simulations demonstrate that numerical calculations of current-density distributions are required, e.g., in the case of magnetic strips with an indentation. Such strips are frequently used for the design of devices based on current-driven domain-wall motion. A dramatic increase of the current density is found at the apex of the notch, which is expected to strongly affect the magnetization processes in such strips.

تحميل البحث