A brief review of various methods to calculate radiative accelerations for stellar evolution and an analysis of their limitations are followed by applications to Pop I and Pop II stars. Recent applications to Horizontal Branch (HB) star evolution are also described. It is shown that models including atomic diffusion satisfy Schwarzschilds criterion on the interior side of the core boundary on the HB without the introduction of overshooting. Using stellar evolution models starting on the Main Sequence and calculated throughout evolution with atomic diffusion, radiative accelerations are shown to lead to abundance anomalies similar to those observed on the HB of M15.