We examine the effects of stochastic input currents on the firing behavior of two excitable neurons coupled with fast excitatory synapses. In such cells (models), typified by the quadratic integrate and fire model, mutual synaptic coupling can cause sustained firing or oscillatory behavior which is necessarily antiphase. Additive Gaussian white noise can transiently terminate the oscillations, hence destroying the stable limit cycle. Further application of the noise may return the system to spiking activity. In a particular noise range, the transition times between the oscillating and the resting state are strongly asymmetric. We numerically investigate an approximate basin of attraction, A, of the periodic orbit and use Markov process theory to explain the firing behavior in terms of the probability of escape of trajectories from A