We study the effects of metallic doping on the electronic properties of graphene using density functional theory in the local density approximation in the presence of a local charging energy (LDA+U). The electronic properties are sensitive to whether graphene is doped with alkali or transition metals. We estimate the the charge transfer from a single layer of Potassium on top of graphene in terms of the local charging energy of the graphene sheet. The coating of graphene with a non-magnetic layer of Palladium, on the other hand, can lead to a magnetic instability in coated graphene due to the hybridization between the transition-metal and the carbon orbitals.