تم استخدام أساليب الشبكة العصبية الحديثة الأخيرة (SOTA) وأساليب Neural العصبية الفعالة على أساس النماذج المدربة مسبقا (PTM) في تجزئة الكلمات الصينية (CWS)، وتحقيق نتائج رائعة. ومع ذلك، فإن الأعمال السابقة تركز على تدريب النماذج مع Corpus الثابتة في كل تكرار. المعلومات المتوسطة المتوسطة هي أيضا قيمة. علاوة على ذلك، فإن تقلب الأساليب العصبية السابقة محدودة بالبيانات المشروح على نطاق واسع. هناك عدد قليل من الضوضاء في كوربوس المشروح. بذلت جهود محدودة من قبل الدراسات السابقة للتعامل مع هذه المشاكل. في هذا العمل، نقترح نهج CWS الخاضع للإشراف ذاتيا بمعماري مباشر وفعال. أولا، ندرب نموذج تجزئة كلمة واستخدامه لتوليد نتائج التجزئة. بعد ذلك، نستخدم نموذج لغة مصنف منقح (MLM) لتقييم جودة نتائج التجزئة المستندة إلى تنبؤات الامتيازات. أخيرا، نستفيد من التقييمات لمساعدة تدريب القطاع من خلال تحسين الحد الأدنى من التدريب على المخاطر. تظهر النتائج التجريبية أن نهجنا يتفوق على الأساليب السابقة في 9 مجموعات بيانات مختلفة CWS مع تدريب معايير واحدة وتدريب معايير متعددة وتحقيق متانة أفضل.