يعمل العمل المسبق على جيل البيانات إلى النص، ومهمة تحويل الكلام الرسم البياني (KG) ثلاث مرات إلى نص طبيعي، يركز على مجموعات البيانات القياسية الخاصة بالمجال. ومع ذلك، في هذه الورقة، فإننا ننفذنا اللغة الإنجليزية بأكملها Wikidata KG، ومناقشة التحديات الفريدة المرتبطة بمجال واسع ومجموع واسع النطاق. نوضح كذلك بأنه لفظي كجم شامل ومكون من كجم مثل Wikidata يمكن استخدامه لدمج KGS الهيكلية واللغات الطبيعية. على عكس العديد من البنيات التي تم تطويرها لدمج هاتين المصدرين، فإن نهجنا يحول كجم إلى نص طبيعي، مما يسمح له بالدمج بسلاسة في نماذج اللغة الحالية. إنه يحمل مزايا أخرى لتحسين الدقة الواقعية وتقليل السمية في نموذج اللغة الناتج. نقوم بتقييم هذا النهج عن طريق زيادة عملية استرجاع النموذج لغوي استرجاع وإظهار تحسينات كبيرة على مهام المعرفة المكثفة في المجال المفتوح وكثير المعرفة LAMA.