يعمل العمل الأخير (فنغ وآخرون.، 2018) وجود شظايا مدخلات قصيرة غير قابلة للتفسير التي تحقق ثقة عالية ودقة في النماذج العصبية. نشير إلى هذه المدخلات الحد الأدنى للحفاظ على التنبؤ (MPPIS). في سياق الإجابة على السؤال، نحن نحقق في الفرضيات المتنافسة لوجود MPPIs، بما في ذلك ضعف المعايرة الخلفية للنماذج العصبية، ونقص الاحيلات، وتحيز DataSet "(حيث يتعلم نموذج الحضور إلى العظة الزائفة غير الجماعية بيانات التدريب). نكتشف التحير الثابت في MPPIS إلى بذور التدريب العشوائي، والهندسة المعمارية النموذجية، ومجال التدريب، والمجال التدريبي. إظهار MPPIS إمكانية نقل رائعة عبر المجالات التي تحقق أداء أعلى بكثير من استفسارات قصيرة مماثلة. بالإضافة إلى ذلك، فشل معاقبة الثقة الزائدة في MPPIS تحسين إما التعميم أو المتانة الخصومة. تشير هذه النتائج إلى إمكانية تفسير MPPIS غير كافية لتوصيف قدرة التعميم لهذه النماذج. نأمل أن يشجع هذا التحقيق المركز تحليلا منهجيا للسلوك النموذجي خارج التوزيع القابل للتفسير البشري للأمثلة.