في الآونة الأخيرة، تم تحقيق أداء مثير للإعجاب على مختلف مهام فهم اللغة الطبيعية من خلال دمج بناء الجملة والمعلومات الدلالية في النماذج المدربة مسبقا، مثل بيرت وروبرتا.ومع ذلك، يعتمد هذا النهج على ضبط النماذج الدقيقة الخاصة بالمشكلات، وعلى نطاق واسع، تظهر نماذج BERT-يشبئون الأداء، وهي غير فعالة، عند تطبيقها على مهام مقارنة التشابه غير المدعومة.تم اقتراح الحكم - بيرت (SBERT) كطريقة تضمين عقوبة عامة للأغراض العامة، مناسبة لكل من مقارنة التشابه والمهام المصب.في هذا العمل، نظهر أنه من خلال دمج المعلومات الهيكلية في SBERT، فإن النموذج الناتج يتفوق على SBERTT وتميز الجملة العامة السابقة على مجموعات بيانات التشابه الدلالي غير المنصوص عليها ومهام تصنيف النقل.