نستكشف عدد قليل من التعلم (FSL) لتصنيف العلاقة (RC).مع التركيز على السيناريو الواقعي من FSL، والتي قد لا تنتمي مثيل الاختبار إلى أي من الفئات المستهدفة (لا شيء أعلاه، [nota])، فإننا أولا إعادة النظر في هيكل مجموعة البيانات الشعبية الأخيرة ل FSL، مشيرا إليهاتوزيع البيانات غير واقعية.لعلاج هذا، نقترح منهجية جديدة لاستكشاف بيانات اختبار القليل من الطوائم بشكل أكثر واقعية من مجموعات البيانات المتوفرة ل RC الإشراف، وتطبيقها على مجموعة البيانات المشبوكة.هذا ينتج معيارا صعبا جديدا ل FSL-RC، في أي حالة من النماذج الفنية تظهر أداء ضعيف.بعد ذلك، نقوم بتحليل مخططات التصنيف ضمن النهج الأقرب القائم على الإرشاد القائم على التضمين FSL، فيما يتعلق بالقيود التي يفرضونها على مساحة التضمين.الناجمة عن هذا التحليل، نقترح مخطط تصنيف جديد يتمثل فيه فئة NOTA كأداة مستفادة، مبين تجريبي ليكون خيارا جذابا ل FSL.