يستخدم التعلم النشط (AL) خوارزمية اختيار البيانات لتحديد عينات تدريب مفيدة لتقليل تكلفة التوضيحية. هذه هي الآن أداة أساسية لبناء محلل تحويلات تحويلية منخفضة الموارد مثل Taggers جزء من الكلام (POS). يتم تصميم الاستدلال الموجودة بشكل عام بشكل عام على مبدأ اختيار مثيلات تدريبية غير مؤكدة ولكنها قد تقلل من هذه الحالات تقليل عدد كبير من الأخطاء. ومع ذلك، في دراسة تجريبية عبر ست لغات متنوعة من النطباض (الألمانية والسويدية والاجنية والشابات الشمالية والفارسية والأوكرانية)، وجدنا النتيجة المثيرة للدهشة أنه حتى في سيناريو أوراكل حيث نعرف عدم اليقين الحقيقي للتوقعات، هذه الاستدلال الحالية بعيدون عن الأمثل. بناء على هذا التحليل، نطرح مشكلة آل كما اختيار الحالات التي تقلل من الارتباك بين أزواج من علامات الإخراج معينة. تظهر تجربة واسعة النطاق على اللغات المذكورة أعلاه أن استراتيجيتنا المقترحة تتفوق على استراتيجيات آجال أخرى من هامش مهم. نقدم أيضا نتائج مساعدة توضح أهمية المعايرة المناسبة للنماذج، والتي نضمنها من خلال التدريب المبريد، وتحليلا إظهار كيفية تحديد استراتيجيتنا المقترحة أمثلة تتابع بشكل وثيق توزيع بيانات Oracle. يتم إصدار الرمز علني هنا