Lorentz transformation of the reduced helicity density matrix for a massive spin 1/2 particle is investigated in the framework of relativistic quantum information theory for the first time. The corresponding helicity entropy is calculated, which shows no invariant meaning as that of spin. The variation of the helicity entropy with the relative speed of motion of inertial observers, however, differs significantly from that of spin due to their distinct transformation behaviors under the action of Lorentz group. This novel and odd behavior unique to the helicity may be readily detected by high energy physics experiments. The underlying physical explanations are also discussed.