Pairwise Concurrence Dynamics: A Four-Qubit Model


الملخص بالإنكليزية

We examine entanglement dynamics via concurrence among four two-state systems labeled $A, ~a, ~B, ~b$. The four systems are arranged on an addressable lattice in such a way that $A$ and $a$ at one location labeled $Aa$ can interact with each other via excitation exchange, and the same for $B$ and $b$ at location $Bb$. The $Aa$ location is prepared entangled with the $Bb$ location, but their mutual complete isolation prevents interaction in the interval between actions of an external addressing agent. There are six pairwise concurrences on the lattice, and we follow their evolution in the interval between external actions. We show how entanglement evolves and may exhibit the non-analytic effect termed entanglement sudden death (ESD), with periodic recovery. These loss and gain processes may be interpreted as entanglement transfer between the subsystems.

تحميل البحث