We consider explicitly two examples of d-dimensional quantum channels with correlated noise and show that, in agreement with previous results on Pauli qubit channels, there are situations where maximally entangled input states achieve higher values of the output mutual information than product states. We obtain a strong dependence of this effect on the nature of the noise correlations as well as on the parity of the space dimension, and conjecture that when entanglement gives an advantage in terms of mutual information, maximally entangled states achieve the channel capacity.