In the model of low-energy bar-K N interactions near threshold (EPJA 21, 11 (2004); 25, 79 (2005)) we calculate isospin-breaking corrections to the energy level displacement of the ground state of kaonic hydrogen, investigated by Meissner, Raha and Rusetsky (EPJC 35, 349 (2004)) within the non-relativistic effective Lagrangian approach based on ChPT by Gasser and Leutwyler. Our results agree well with those by Meiss ner et al.. In addition we calculate the dispersive corrections, caused by the transition K^-p -> bar-K^0n ->K^-p with the bar-K^0n pair on-mass shell. We show also how hypothesis on the dominant role of the bar-K^0n-cusp for the S-wave amplitude of low-energy K^-p scattering near threshold, used by Meissner et al., can be realized in our approach. The result agrees fully with that by Meissner et al..