Probing the gateway to superheavy nuclei in cranked relativistic Hartree-Bogoliubov theory


الملخص بالإنكليزية

The cranked relativistic Hartree+Bogoliubov theory has been applied for a systematic study of the nuclei around 254No, the heaviest nuclei for which detailed spectroscopic data are available. The deformation, rotational response, pairing correlations, quasi-particle and other properties of these nuclei have been studied with different relativistic mean field (RMF) parametrizations. For the first time, the quasi-particle spectra of odd deformed nuclei have been calculated in a fully self-consistent way within the framework of the RMF theory. The energies of the spherical subshells, from which active deformed states of these nuclei emerge, are described with an accuracy better than 0.5 MeV for most of the subshells with the NL1 and NL3 parametrizations. However, for a few subshells the discrepancy reach 0.7-1.0 MeV. The implications of these results for the study of superheavy nuclei are discussed.

تحميل البحث