Low-dimensional Singularities with Free Divisors as Discriminants


الملخص بالإنكليزية

We present versal complex analytic families, over a smooth base and of fibre dimension zero, one, or two, where the discriminant constitutes a free divisor. These families include finite flat maps, versal deformations of reduced curve singularities, and versal deformations of Gorenstein surface singularities in C^5. It is shown that such free divisors often admit a fast normalization, obtained by a single application of the Grauert-Remmert normalization algorithm. For a particular Gorenstein surface singularity in C^5, namely the simple elliptic singularity of type tilde A_4, we exhibit an explicit discriminant matrix and show that the slice of the discriminant for a fixed j-invariant is the cone over the dual variety of an elliptic curve.

تحميل البحث