We study compact Riemannian manifolds for which the light between any pair of points is blocked by finitely many point shades. Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riemannian manifolds this finite blocking property characterizes the flat metrics. Using entropy considerations, we verify this conjecture amongst metrics with nonpositive sectional curvatures. Using the same approach, K. Burns and E. Gutkin have independently obtained this result. Additionally, we show that compact quotients of Euclidean buildings have the finite blocking property. On the positive curvature side, we conjecture that compact Riemannian manifolds with the same blocking properties as compact rank one symmetric spaces are necessarily isometric to a compact rank one symmetric space. We include some results providing evidence for this conjecture.