Asymptotically Free Non-Abelian Gauge Theories With Fermions and Scalars As Alternatives to QCD


الملخص بالإنكليزية

In this paper we construct non-Abelian gauge theories with fermions and scalars that nevertheless possess asymptotic freedom.The scalars are taken to be in a chiral multiplet transforming as $(2,2)$ under $SU(2)_Lotimes SU(2)_R$ and transforming as singlets under the colour SU(3) group. We consider two distinct scenarios, one in which the additional scalars are light and another in which they are heavier than half the Z-boson mass. It is shown that asymptotic freedom is obtained without requiring that all additional couplings keep fixed ratios with each other. It is also shown that both scenarios can not be ruled out by what are considered standard tests of QCD like R- parameter, g-2 for muons or deep inelastic phenomena. The light mass scenario is however ruled out by high precision Z-width data (and only by that one data).The heavy mass scenario is still viable and is shown to naturally pass the test of flavour changing neutral currents. It also is not ruled out by precision electroweak oblique parameters. Many distinctive experimental signatures of these models are also discussed.

تحميل البحث