Study of Quark Propagator Solutions to the Dyson--Schwinger Equation in a Confining Model


الملخص بالإنكليزية

We solve the Dyson--Schwinger equation for the quark propagator in a model with singular infrared behavior for the gluon propagator. We require that the solutions, easily found in configuration space, be tempered distributions and thus have Fourier transforms. This severely limits the boundary conditions that the solutions may satisify. The sign of the dimensionful parameter that characterizes the model gluon propagator can be either positive or negative. If the sign is negative, we find a unique solution. It is singular at the origin in momentum space, falls off like $1/p^2$ as $p^2rightarrow +/-infty$, and it is truly nonperturbative in that it is singular in the limit that the gluon--quark interaction approaches zero. If the sign of the gluon propagator coefficient is positive, we find solutions that are, in a sense that we exhibit, unconstrained linear combinations of advanced and retarded propagators. These solutions are singular at the origin in momentum space, fall off like $1/p^2$ asympotically, exhibit ``resonant--like behavior at the position of the bare mass of the quark when the mass is large compared to the dimensionful interaction parameter in the gluon propagator model, and smoothly approach a linear combination of free--quark, advanced and retarded two--point functions in the limit that the interaction approaches zero. In this sense, these solutions behave in an increasingly ``particle--like manner as the quark becomes heavy. The Feynman propagator and the Wightman function are not tempered distributions and therefore are not acceptable solutions to the Schwinger--Dyson equation in our model. On this basis we advance several arguments to show that the Fourier--transformable solutions we find are consistent with quark confinement, even though they have singularities on the

تحميل البحث