Neutrino Telescopes as a Direct Probe of Supersymmetry Breaking


الملخص بالإنكليزية

We consider supersymmetric models where the scale of supersymmetry breaking lies between 5 $times 10^6$ GeV and 5 $times 10^8$ GeV. In this class of theories, which includes models of gauge mediated supersymmetry breaking, the lightest supersymmetric particle is the gravitino. The next to lightest supersymmetric particle is typically a long lived charged slepton with a lifetime between a microsecond and a second, depending on its mass. Collisions of high energy neutrinos with nucleons in the earth can result in the production of a pair of these sleptons. Their very high boost means they typically decay outside the earth. We investigate the production of these particles by the diffuse flux of high energy neutrinos, and the potential for their observation in large ice or water Cerenkov detectors. The relatively small cross-section for the production of supersymmetric particles is partially compensated for by the very long range of heavy particles. The signal in the detector consists of two parallel charged tracks emerging from the earth about 100 meters apart, with very little background. A detailed calculation using the Waxman-Bahcall limit on the neutrino flux and realistic spectra shows that km$^3$ experiments could see as many as 4 events a year. We conclude that neutrino telescopes will complement collider searches in the determination of the supersymmetry breaking scale, and may even give the first evidence for supersymmetry at the weak scale.

تحميل البحث