With SNO data on electron-neutrino flux from the sun, it is possible to derive the $ u_e$ survival probability $P_{ee}(E)$ from existing experimental data of Super-Kamiokande, gallium experiments and Homestake. The combined data of SNO and Super-Kamiokande provide boron $ u_e$ flux and the total flux of all active boron neutrinos, giving thus $P_{ee}(E)$ for boron neutrinos. The Homestake detector, after subtraction of the signal from boron neutrinos, gives the flux of Be+CNO neutrinos, and $P_{ee}$ for the corresponding energy interval, if the produced flux is taken from the Standard Solar Model (SSM). Gallium detectors, GALLEX, SAGE and GNO, detect additionally pp-neutrinos. The pp-flux can be calculated subtracting from the gallium signal the rate due to boron, beryllium and CNO neutrinos. The ratio of the measured $pp$-neutrino flux to that predicted by the SSM gives the survival probability for $pp$-neutrinos. Comparison with theoretical survival probabilities shows that the best (among known models) fit is given by LMA and LOW solutions.