Phase-transitions in isotropic extreme type-II superconductors


الملخص بالإنكليزية

Using large scale Monte Carlo simulations on a uniformly frustrated 3DXY model, we report a first order vortex lattice melting transition in clean, isotropic extreme type-II $kappa to infty$ superconductors. This work clarifies an important issue: the unpinned vortex liquid is always incoherent with no phase coherence in any directions for all anisotropies. Previous claims of a disentangled vortex liquid for isotropic superconductors based on simulations, are due to finite size effects. We explicitly show that the effective vortex-line tension vanishes precisely at the superconducting phase transition in zero magnetic field. This loss of line tension is accompanied by an abrupt change in the connectivity of the vortex tangle across the superconductor. We also obtain results indicating that the connectivity of the vortex tangle changes in a similar way even in finite magnetic field, and suggest that this could also be associated with a genuine phase-transition.

تحميل البحث