We establish the qualitative behavior of the incommensurability $epsilon$, optimal domain wall filling $ u$ and chemical potential $mu$ for increasing doping by a systematic slave-boson study of an array of vertical stripes separated by up to $d=11$ lattice constants. Our findings obtained in the Hubbard model with the next-nearest neighbor hopping $t=-0.15t$ agree qualitatively with the experimental data for the cuprates in the doping regime $xlesssim 1/8$. It is found that $t$ modifies the optimal filling $ u$ and triggers the crossover to the diagonal (1,1) spiral phase at increasing doping, stabilized already at $xsimeq 0.09$ for $t=-0.3t$.