The complexity of the Portevin-Le Chatelier effect in Al-2.5%Mg polycrystalline samples subjected to uniaxial tensile tests is quantified. Multiscale entropy analysis is carried out on the stress time series data observed during jerky flow to quantify the complexity of the distinct spatiotemporal dynamical regimes. It is shown that for the static type C band, the entropy is very low for all the scales compared to the hopping type B and the propagating type A bands. The results are interpreted considering the time and length scales relevant to the effect.