Correlated band structure of electron-doped cuprate materials


الملخص بالإنكليزية

We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using a variational cluster-perturbation theory approach based upon the self-energy-functional theory, the spectral function of the electron-doped two-dimensional Hubbard model is calculated. The model includes the next-nearest neighbor electronic hopping amplitude $t$ and a fixed on-site interaction $U=8t$ at half filling and doping levels ranging from $x=0.077$ to $x=0.20$. Our results support the fact that a comprehensive description of the single-particle spectrum of electron-doped cuprates requires a proper treatment of strong electronic correlations. In contrast to previous weak-coupling approaches, we obtain a consistent description of the ARPES experiments without the need to introduce a doping-dependent on-site interaction $U$.

تحميل البحث