We derive an automatic procedure for generating a set of highly localized, non-orthogonal orbitals for linear scaling quantum Monte Carlo calculations. We demonstrate the advantage of these orbitals in calculations of the total energy of both semiconducting and metallic systems by studying bulk silicon and the homogeneous electron gas. For silicon, the improved localization of these orbitals reduces the computational time by a factor five and the memory by a factor of six compared to localized, orthogonal orbitals. For jellium, we demonstrate that the total energy is converged for orbitals truncated within spheres with radii 7-8 $r_s$, opening the possibility of linear scaling QMC calculations for realistic metallic systems.