We discuss theoretically the properties of an electromechanical oscillating system whose operation is based upon the cyclic conservative conversion between gravitational potential, kinetic, and magnetic energies. The system consists of a superconducting coil subjected to a constant external force and to magnetic fields. The coil oscillates and has induced in it a rectified electrical current whose magnitude may reach hundreds of Ampere. The design differs from that of most conventional superconductor machines since the motion is linear (and practically unnoticeable depending on frequency) rather than rotatory, and it does not involve high speeds. Furthermore, there is no need for an external electrical power source for the system to start out. We also show that the losses for such a system can be made extremely small for certain operational conditions, so that by reaching and keeping resonance the system main application should be in the generation and storage of electromagnetic energy.
تحميل البحث