We demonstrate a sensitive method of charge detection based on radio-frequency readout of the Josephson inductance of a superconducting single-electron transistor. Charge sensitivity $1.4 times 10^{-4}e/sqrt{Hz}$, limited by preamplifier, is achieved in an operation mode which takes advantage of the nonlinearity of the Josephson potential. Owing to reactive readout, our setup has more than two orders of magnitude lower dissipation than the existing method of radio-frequency electrometry. With an optimized sample, we expect uncoupled energy sensitivity below $hbar$ in the same experimental scheme.