Revised superconducting phase diagram of hole doped Na$_{x}$(H$_{3}$O)$_{z}$CoO$_{2}cdot y$H$_{2}$O


الملخص بالإنكليزية

We have studied the superconducting phase diagram of NaHspace as a function of electronic doping, characterizing our samples both in terms of Na content $x$ and the Co valence state. Our findings are consistent with a recent report that intercalation of oxpspace ions into Na$_{x}$CoO$_{2}$, together with water, act as an additional dopant indicating that Na sub-stochiometry alone does not control the electronic doping of these materials. We find a superconducting phase diagram where optimal Tcspace is achieved through a Co valence range of 3.24 - 3.35, while Tcspace decreases for materials with a higher Co valence. The critical role of dimensionality in achieving superconductivity is highlighted by similarly doped non-superconducting anhydrous samples, differing from the superconducting hydrate only in inter-layer spacing. The increase of the interlayer separation between CoO$_{2}$ sheets as Co valence is varied into the optimal Tcspace region is further evidence for this criticality.

تحميل البحث