Electron-phonon interaction in the solid form of the smallest fullerene C$_{20}$


الملخص بالإنكليزية

The electron-phonon coupling of a theoretically devised carbon phase made by assembling the smallest fullerenes C$_{20}$ is calculated from first principles. The structure consists of C$_{20}$ cages in an {it fcc} lattice interlinked by two bridging carbon atoms in the interstitial tetrahedral sites ({it fcc}-C$_{22}$). The crystal is insulating but can be made metallic by doping with interstitial alkali atoms. In the compound NaC$_{22}$ the calculated coupling constant $lambda/N(0)$ is 0.28 eV, a value much larger than in C$_{60}$, as expected from the larger curvature of C$_{20}$. On the basis of the McMillans formula, the calculated $lambda$=1.12 and a $mu^*$ assumed in the range 0.3-0.1 a superconducting T$_c$ in the range 15-55 K is predicted.

تحميل البحث