The metallic resistance of a dilute two-dimensional hole gas in a GaAs quantum well: two-phase separation at finite temperature?


الملخص بالإنكليزية

We have studied the magnetotransport properties of a high mobility two-dimensional hole gas (2DHG) system in a 10nm GaAs quantum well (QW) with densities in range of 0.7-1.6*10^10 cm^-2 on the metallic side of the zero-field metal-insulator transition (MIT). In a parallel field well above B_c that suppresses the metallic conductivity, the 2DHG exhibits a conductivity g(T)~0.3(e^2/h)lnT reminiscent of weak localization. The experiments are consistent with the coexistence of two phases in our system: a metallic phase and a weakly insulating Fermi liquid phase having a percolation threshold close to B_c.

تحميل البحث