Thermodynamic properties of the S=1/2 Heisenberg chain in transverse staggered magnetic field H^y_s and uniform magnetic field H^x perpendicular to the staggered field is studied by the finite-temperature density-matrix renormalization-group method. The uniform and staggered magnetization and specific heat are calculated from zero temperature to high temperatures up to T/J=4 under various strength of magnetic fields from H^y_s/J, H^x/J=0 to 2.4. The specific heat and magnetization of the effective Hamiltonian of the Yb_4As_3 are also presented, and field induced gap formation and diverging magnetic susceptibility at low temperature are shown.