Measurements of Particle Dynamics in Slow, Dense Granular Couette Flow


الملخص بالإنكليزية

Experimental measurements of particle dynamics on the lower surface of a 3D Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross-correlation between the velocities of two particles at a given distance $r$ from the moving wall reveals a characteristic lengthscale over which the particles are correlated. The autocorrelation of a single particles velocity reveals a characteristic timescale $tau$ which decreases with distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large $r$. The relationship between the RMS azimuthal velocity fluctuations, $delta v_theta(r)$, and average shear rate, $dotgamma(r)$, was found to be $delta v_theta propto dotgamma^alpha$ with $alpha = 0.52 pm 0.04$. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.

تحميل البحث