The Unusual Near-Infrared Morphology of the Radio Loud Quasar 4C+09.17


الملخص بالإنكليزية

Near-infrared images of the luminous, high redshift (z=2.1108) radio loud quasar 4C+09.17 reveal a complex structure. The quasar (K=15.76 mag) is surrounded by three companion objects having 17.9< K < 20.2 mag at radii of 1.7 < r < 2.9, as well as bright, diffuse emission. The brightest companion has a redshift of z=0.8384 (Lehnert & Becker 1997) and its optical-infrared colors (Lehnert et al. 1997) are consistent with a late-type spiral galaxy at this redshift with a luminosity of about 2L*. This object is likely the galaxy responsible for the strongest MgII absorption line system seen in the spectrum of 4C+09.17 by Barthel et al. (1990). Redshifts are not available for the remaining two companions. The red colors of the second brightest companion appear most consistent with a high redshift star-forming galaxy at z > 1.5. If this object is at the redshift of 4C +09.17 it has a luminosity of about 7L*. The faintest companion has colors which are unlike those expected from either a spiral or an E/S0 galaxy at any redshift associated with the 4C+09.17 system. Since this object lies along the same direction as the radio jet/lobe of 4C+09.17, as well as the extended Ly-alpha emission mapped by Heckman et al. (1991) we suggest that this component can be explained as a combination of strong line emission and scattered QSO light. The resolved, diffuse emission surrounding 4C+09.17 is bright, K~17.0 mag, and about one magnitude redder in J-K than the quasar. If this emission is starlight, a very luminous elliptical host galaxy is implied for 4C+09.17. Scattered and reddened AGN light, emission line gas, and flux from absorbing galaxies along the line of sight may all contribute to this emission.

تحميل البحث