Reverberation mapping methods have been used to measure masses in about three dozen AGNs. The consistency of the virial masses computed from line widths and time delays, the relationship between black hole mass and host-galaxy stellar bulge velocity dispersion, and the consistency with black hole masses estimated from stellar dynamics in the two cases in which such determinations are possible all indicate that reverberation mass measurements are robust and are accurate to typically a factor of a few. The reverberation-mapped AGNs are of particular importance because they anchor the scaling relationships that allow black hole mass estimation based on single spectra. We discuss potential sources of systematic error, particularly with regard to how the emission line widths are measured.