The puzzlingly large Ca II triplet absorption in dwarf elliptical galaxies


الملخص بالإنكليزية

We present central CaT, PaT, and CaT* indices for a sample of fifteen dwarf elliptical galaxies (dEs). Twelve of these have CaT* ~ 7 A and extend the negative correlation between the CaT* index and central velocity dispersion sigma, which was derived for bright ellipticals (Es), down to 20 < sigma < 55 km/s. For five dEs we have independent age and metallicity estimates. Four of these have CaT* ~ 7 A, much higher than expected from their low metallicities (-1.5 < [Z/H] < -0.5). The observed anti-correlation of CaT* as a function of sigma or Z is in flagrant disagreement with theory. We discuss some of the amendments that have been proposed to bring the theoretical predictions into agreement with the observed CaT*-values of bright Es and how they can be extended to incorporate also the observed CaT*-values of dEs. Moreover, 3 dEs in our sample have CaT* ~ 5 A, as would be expected for metal-poor stellar systems. Any theory for dE evolution will have to be able to explain the co-existence of low-CaT* and high-CaT* dEs at a given mean metallicity. This could be the first direct evidence that the dE population is not homogeneous, and that different evolutionary paths led to morphologically and kinematically similar but chemically distinct objects.

تحميل البحث