The Visibility of Galactic Bars and Spiral Structure At High Redshifts


الملخص بالإنكليزية

We investigate the visibility of galactic bars and spiral structure in the distant Universe by artificially redshifting 101 B-band CCD images of local spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. Our artificially redshifted images correspond to Hubble Space Telescope I-band observations of the local galaxy sample seen at z=0.7, with integration times matching those of both the very deep Northern Hubble Deep Field data, and the much shallower Flanking Field observations. The expected visibility of galactic bars is probed in two ways: (1) using traditional visual classification, and (2) by charting the changing shape of the galaxy distribution in Hubble space, a quantitative two-parameter description of galactic structure that maps closely on to Hubbles original tuning fork. Both analyses suggest that over 2/3 of strongly barred luminous local spirals i.e. objects classified as SB in the Third Reference Catalog) would still be classified as strongly barred at z=0.7 in the Hubble Deep Field data. Under the same conditions, most weakly barred spirals (classified SAB in the Third Reference Catalog) would be classified as regular spirals. The corresponding visibility of spiral structure is assessed visually, by comparing luminosity classifications for the artificially redshifted sample with the corresponding luminosity classifications from the Revised Shapley Ames Catalog. We find that for exposures times similar to that of the Hubble Deep Field spiral structure should be detectable in most luminous low-inclination spiral galaxies at z=0.7 in which it is present. [ABRIDGED]

تحميل البحث