Nonlinear Stochastic Biasing of Galaxies and Dark Halos in Cosmological Hydrodynamic Simulations


الملخص بالإنكليزية

We perform an extensive analysis of nonlinear and stochastic biasing of galaxies and dark halos in spatially flat low-density CDM universe using cosmological hydrodynamic simulations. We compare their biasing properties with the predictions of an analytic halo biasing model. Dark halos in our simulations exhibit reasonable agreement with the predictions only on scales larger than 10h^{-1}Mpc, and on smaller scales the volume exclusion effect of halos due to their finite size becomes substantial. Interestingly the biasing properties of galaxies are better described by extrapolating the halo biasing model predictions. We also find the clear dependence of galaxy biasing on their formation epoch; the distribution of old populations of galaxies tightly correlates with the underlying mass density field, while that of young populations is slightly more stochastic and anti-biased relative to dark matter. The amplitude of two-point correlation function of old populations is about 3 times larger than that of the young populations. Furthermore, the old population of galaxies reside within massive dark halos while the young galaxies are preferentially formed in smaller dark halos. Assuming that the observed early and late-type galaxies correspond to the simulated old and young populations of galaxies, respectively, all of these segregations of galaxies are consistent with observational ones for the early and late-type of galaxies such as the morphology--density relation of galaxies.

تحميل البحث