Resonance Line Scattering in Supernova Remnant Shocks


الملخص بالإنكليزية

We present a three dimensional radiative transfer model to examine the effects of resonance line scattering in the post-shock flow behind a non-radiative supernova remnant shock. For a rippled shock front viewed edge-on, line scattering significantly reduces the observed flux of CIV 1549 and NV 1240, two important diagnostic lines in the ultraviolet spectra of supernova remnants. The correction factor (defined to be the ratio of the line flux that would be observed neglecting scattering, to the actual observed line flux) is a function of position within the filament. For sufficiently large regions that include crisp edges as well as more diffuse regions of the filament structure, the CIV and NV correction factors are between about 1.5 and 3.5 (and the CIV correction factor is invariably larger than the NV correction factor). The correction factors have a larger range when smaller regions are considered. The CIV correction factor is about 6 at the filament edges, while the NV correction factor is about 4. These simulations of resonance line scattering will be useful for the analysis of supernova remnant shock spectra.

تحميل البحث