We derive structural parameters and evidence for extended tidal debris from star count and preliminary standard candle analyses of the Large Magellanic Cloud based on Two Micron All Sky Survey (2MASS) data. The full-sky coverage and low extinction in K_s presents an ideal sample for structural analysis of the LMC. The star count surface densities and deprojected inclination for both young and older populations are consistent with previous work. We use the full areal coverage and large LMC diameter to Galactrocentric distance ratio to infer the same value for the disk inclination based on perspective. A standard candle analysis based on a sample of carbon long-period variables (LPV) in a narrow color range, 1.6<J-K_s<1.7 allows us to probe the three-dimensional structure of the LMC along the line of sight. The intrinsic brightness distribution of carbon LPVs in selected fields implies that $sigma_Msimlt 0.2^m$ for this color cut. The sample provides a {it direct} determination of the LMC disk inclination: $42.3^circpm 7.2^circ$. Distinct features in the photometric distribution suggest several distinct populations. We interpret this as the presence of an extended stellar component of the LMC, which may be as thick as 14 kpc, and intervening tidal debris at roughly 15 kpc from the LMC.