Computing structure constants for rings of finite rank from minimal free resolutions


الملخص بالإنكليزية

We show how the minimal free resolution of a set of $n$ points in general position in projective space of dimension $n-2$ explicitly determines structure constants for a ring of rank $n$. This generalises previously known constructions of Levi-Delone-Faddeev and Bhargava in the cases $n=3,4,5$.

تحميل البحث