Ground-state $g$ factor of highly charged $^{229}$Th ions: an access to the M1 transition probability between the isomeric and ground nuclear states


الملخص بالإنكليزية

A method is proposed to determine the $M1$ nuclear transition amplitude and hence the lifetime of the nuclear clock transition between the low-lying ($sim 8$ eV) first isomeric state and the ground state of $^{229}$Th from a measurement of the ground-state $g$ factor of few-electron $^{229}$Th ions. As a tool, the effect of nuclear hyperfine mixing (NHM) in highly charged $^{229}$Th-ions such as $^{229}$Th$^{89+}$ or $^{229}$Th$^{87+}$ is utilized. The ground-state-only $g$-factor measurement would also provide first experimental evidence of NHM in atomic ions. Combining the measurements for H-, Li-, and B-like $^{229}$Th ions has a potential to improve the initial result for a single charge state and to determine the nuclear magnetic moment to a higher accuracy than that of the currently accepted value. The calculations include relativistic, interelectronic-interaction, QED, and nuclear effects.

تحميل البحث