Closed $ EP $ and Hypo-$ EP $ Operators on Hilbert Spaces


الملخص بالإنكليزية

A bounded linear operator $ A$ on a Hilbert space $ mathcal H $ is said to be an $ EP $ (hypo-$ EP $) operator if ranges of $ A $ and $ A^* $ are equal (range of $ A $ is contained in range of $ A^* $) and $ A $ has a closed range. In this paper, we define $EP$ and hypo-$EP$ operators for densely defined closed linear operators on Hilbert spaces and extend results from bounded operator settings to (possibly unbounded) closed operator settings.

تحميل البحث