NGTS clusters survey -- III: A low-mass eclipsing binary in the Blanco 1 open cluster spanning the fully convective boundary


الملخص بالإنكليزية

We present the discovery and characterisation of an eclipsing binary identified by the Next Generation Transit Survey in the $sim$115 Myr old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wider orbit. This system is the first well-characterised, low-mass eclipsing binary in Blanco 1. With a low mass ratio, a tertiary companion and binary components that straddle the fully convective boundary, it is an important benchmark system, and one of only two well-characterised, low-mass eclipsing binaries at this age. We simultaneously model light curves from NGTS, TESS, SPECULOOS and SAAO, radial velocities from VLT/UVES and Keck/HIRES, and the systems spectral energy distribution. We find that the binary components travel on circular orbits around their common centre of mass in $P_{rm orb} = 1.09800524 pm 0.00000038$ days, and have masses $M_{rm pri}=0.3978pm 0.0033$ M$_{odot}$ and $M_{rm sec}=0.2245pm 0.0018$ M$_{odot}$, radii $R_{rm pri}=0.4037pm 0.0048$ R$_{odot}$ and $R_{rm sec}=0.2759pm 0.0055$ R$_{odot}$, and effective temperatures $T_{rm pri}=3372,^{+44}_{-37}$ K and $T_{rm sec}=3231,^{+38}_{-31}$ K. We compare these properties to the predictions of seven stellar evolution models, which typically imply an inflated primary. The system joins a list of 19 well-characterised, low-mass, sub-Gyr, stellar-mass eclipsing binaries, which constitute some of the strongest observational tests of stellar evolution theory at low masses and young ages.

تحميل البحث