Assume $ k $ is a positive integer, $ lambda={k_1,k_2,...,k_q} $ is a partition of $ k $ and $ G $ is a graph. A $lambda$-assignment of $ G $ is a $ k $-assignment $ L $ of $ G $ such that the colour set $ bigcup_{vin V(G)} L(v) $ can be partitioned into $ q $ subsets $ C_1cup C_2cupcdotscup C_q $ and for each vertex $ v $ of $ G $, $ |L(v)cap C_i|=k_i $. We say $ G $ is $lambda$-choosable if for each $lambda$-assignment $ L $ of $ G $, $ G $ is $ L $-colourable. In particular, if $ lambda={k} $, then $lambda$-choosable is the same as $ k $-choosable, if $ lambda={1, 1,...,1} $, then $lambda$-choosable is equivalent to $ k $-colourable. For the other partitions of $ k $ sandwiched between $ {k} $ and $ {1, 1,...,1} $ in terms of refinements, $lambda$-choosability reveals a complex hierarchy of colourability of graphs. Assume $lambda={k_1, ldots, k_q} $ is a partition of $ k $ and $lambda $ is a partition of $ kge k $. We write $ lambdale lambda $ if there is a partition $lambda={k_1, ldots, k_q}$ of $k$ with $k_i ge k_i$ for $i=1,2,ldots, q$ and $lambda$ is a refinement of $lambda$. It follows from the definition that if $ lambdale lambda $, then every $lambda$-choosable graph is $lambda$-choosable. It was proved in [X. Zhu, A refinement of choosability of graphs, J. Combin. Theory, Ser. B 141 (2020) 143 - 164] that the converse is also true. This paper strengthens this result and proves that for any $ lambda otle lambda $, for any integer $g$, there exists a graph of girth at least $g$ which is $lambda$-choosable but not $lambda$-choosable.