Large $ Y_{k,b} $-tilings and Hamilton $ ell $-cycles in $k$-uniform hypergraphs


الملخص بالإنكليزية

Let $Y_{3,2}$ be the $3$-uniform hypergraph with two edges intersecting in two vertices. Our main result is that any $n$-vertex 3-uniform hypergraph with at least $binom{n}{3} - binom{n-m+1}{3} + o(n^3)$ edges contains a collection of $m$ vertex-disjoint copies of $Y_{3,2}$, for $mle n/7$. The bound on the number of edges is asymptotically best possible. This can be viewed as a generalization of the ErdH{o}s Matching Conjecture.We then use this result together with the absorbing method to determine the asymptotically best possible minimum $(k-3)$-degree threshold for $ell$-Hamiltonicity in $k$-graphs, where $kge 7$ is odd and $ell=(k-1)/2$. Moreover, we give related results on $ Y_{k,b} $-tilings and Hamilton $ ell $-cycles with $ d $-degree for some other $ k,ell,d $.

تحميل البحث