Progress towards a continuously operating matter wave interferometer for inertial sensing


الملخص بالإنكليزية

We report on our progress in the construction of a continuous matter-wave interferometer for inertial sensing via the non-destructive observation of Bloch oscillations. At the present stage of the experiment, around $10^5$ strontium-88 atoms are cooled down to below 1$mu$K and transferred to the vertical arm of the optical mode of a ring cavity. Pumped by lasers red-tuned with respect to the $7.6~$kHz broad intercombination transition of strontium, the two counterpropagating modes of the ring cavity form a one-dimensional optical lattice in which the atoms, accelerated by gravity, will perform Bloch oscillations. The atomic motion can be monitored in real-time via its impact on the counterpropagating light fields. We present the actual state of the experiment and characterize the laser spectrometer developed to drive the atom-cavity interaction.

تحميل البحث