Robust and Resource-Efficient Quantum Circuit Approximation


الملخص بالإنكليزية

We present QEst, a procedure to systematically generate approximations for quantum circuits to reduce their CNOT gate count. Our approach employs circuit partitioning for scalability with procedures to 1) reduce circuit length using approximate synthesis, 2) improve fidelity by running circuits that represent key samples in the approximation space, and 3) reason about approximation upper bound. Our evaluation results indicate that our approach of dissimilar approximations provides close fidelity to the original circuit. Overall, the results indicate that QEst can reduce CNOT gate count by 30-80% on ideal systems and decrease the impact of noise on existing and near-future quantum systems.

تحميل البحث